Synthesis and Crystal Structure of AglnO $_{2}$

B. U. KÖHLER AND M. JANSEN*
Institut für anorganische Chemie der Universität Hannover, Callinstr. 9, 3000 Hannover 1, Federal Republic of Germany

Received January 15, 1987; in revised form March 2, 1987

Abstract

Single crystals of AgInO_{2} were obtained by hydrothermal reaction of $\mathrm{Ag}_{2} \mathrm{O}$ and $\mathrm{In}_{2} \mathrm{O}_{3}$ in NaOH at elevated temperature and O_{2} pressure. The delafossite type crystal structure was refined using single crystal X-ray diffractometer data ($R 3 m ; a_{\text {hex }}=327.68(7)$, $c_{\text {hex }}=1887.8(7) \mathrm{pm} ; Z=3 ; R_{\mathrm{w}}=0.022 ; 171$ independent structure factors). In-O and $\mathrm{Ag}-\mathrm{O}$ bond distances are 217.4(4) and 207.6(8) pm, respectively. Structure and bond characteristics are discussed. © 1987 Academic Press, Inc.

Introduction

The Ag-delafossites are promising candidates for further studies on previously postulated $\mathrm{Ag}^{+}-\mathrm{Ag}^{+}$bonding interactions (1). As the compounds all crystallize in the same (delafossite) structure, the possibility of varying the $\mathrm{Ag}-\mathrm{Ag}$ distances over a wide range ($\sim 290-360 \mathrm{pm}$), without essentially changing other Ag-related parameters, arises. This would allow an almost matrixindependent evaluation of physical properties effected by the $\mathrm{Ag}-\mathrm{Ag}$ distance. In order to provide a quantitative basis for these investigations, accurate crystallographic data concerning bond lengths and angles are necessary.

Although a large number of Ag-delafossites have been prepared (2) only few have been studied structurally in detail $\left(\mathrm{AgAlO}_{2}\right.$ (3) and AgFeO_{2} (4)). Data on bond lengths etc. is therefore not available, with the aforementioned exceptions.

The present paper deals with the struc-
the adsorbed NaOH solution. Failure to find Na by photometric analysis set an upper limit of 0.05% for the concentration of this element in the product.

Crystal Data and Structure Refinement

Rotation, Weissenberg, and precession photographs were taken in order to determine the crystal system and possible space groups, while unit cell parameters were refined from Guinier powder data ($\mathrm{Cu} K \alpha_{1}$, low quartz as internal standard): Rhombohedral, $R \overline{3} m, a_{\text {hex }}=327.68(7), c_{\text {hex }}=$

TABLE I
Powder Data of AgInO_{2}
$\left.\begin{array}{lcrlll}\hline h k l & d_{0}(\mathrm{pm}) & I_{v} & h k l & d_{v}(\mathrm{pm}) & I_{\mathrm{o}} \\ \hline 0003 & 629.59 & 1 & 1116 & 145.36 & 9 \\ 006 & 314.81 & 8 & 202 & 140.29 & 5 \\ 012 & 271.81 & 8 & 024 & 135.88 & 5 \\ 104 & 243.33 & 7 & 0114 \\ 018 & 181.52 & 5 & 208\end{array}\right\}$

TABLE II
Observed and Calculated Structure Factors of R-AgInO ${ }_{2}$

20	1701	1730	0	0	1096	1073	-2	0	917	909	-1	50	618	618		1		-194
-2 3	53	52	-4	41	117	117	-1	4	104	104	0	51	149	136	0	2	1709	2057
-2 22	1436	1436	-1	32	1150	1131	-3	42	798	808	0	2	692	705		52	503	494
-2 512	613	621		3	280	268	-1	23	224	223	-3	33	205	208		33	203	208
-2 43	206	206	-4	53	206	204	-1	3	208	204	-1	14	1468	1687		24	1258	1247
-2 34	1010	998	-4	4	613	629	-1	4	710	720	-3	54	545	552	0	54	442	438
015	368	64	-2	25	283	291	-1	35	257	262	-3	45	235	240	0	45	231	235
-5 5 5	227	221	-2	55	231	231	00	06	1549	1852	-1	6	1312	1328	-3	36	911	899
03	913	899	-2	6	764	760	-4	56	519	24	-1	56	522	524		27	10	
-237	124	122	4	47	153	155	-1	7	145	147	-3	57	162	59	0	57	169	162
01	1611	1738	-2	28	1346	1330	-1	38	1097	1075	-3	48	790	794	0	48	696	700
-2 58	616	617	0	09	288	-257	-12	29	73	-77	-3	39	43	40		39	63	40
249	78	66	4	59	116	106	-1	59	117	106	-1	110	1546	1593	0	210	1284	1257
-2 310	1055	1033		410	678	684	-1	410	772	773	-3	510	603	605	-2	2	65	61
-1311	92	91	-3	411	129	124		411	142	33	-2	511	141	140	0		1514	1417
-1212	1166	1131	-3	312	813	806		312	818	806	-2	412	699	699	-4	12	492	87
-1 512	496	487	-1	113	197	204		213	191	197	-2	313	189	196	-4	413	203	201
1413	201	200	-3	513	203	200	0	114	1182	1137	-2	214	961	945	-1	314	809	03
-3 414	598	610		414	532	540	-2	514	476	478	0	015	107	119		15	136	仡
-3 315	158	156	0	315	156	156	-2	415	165	64	-4	515	18.	173	-1	15	182	173
1116	1200	1148	0	216	988	962	-2	316	836	830	-4	416	564	569	-1	16	632	63
-3516	508	506		117	66	-67	-1	317	39	25	-3	417	81	69	0	417	78	84
-2 517	116	94	0	018	1346	1212	-12	218	1051	1017	-3	318	778	769	0	18	780	770
2418	686	84		119	75	-87	-4	419	74	66		419	75	51	0	20	1017	999
-2 220	869	857		320	745	751	-3	420	585	589	0	420	530	524	-1	221	76	60
-3 321	117	102	0	321	104	102	-2	421	127	115	-1	122	838	839	0	222	723	725
-2 322	625	635	-1	422	494	497		123	77	88	-2	223	110	108	-1	23	129	24
-3 423	148	145	0	024	872	834	-1	224	718	722	-3	324	558	560	-	324	550	560
-2 424	505	496	-2	325	57	44	0	126	798	816	-2	226	695	717	-1	326	624	635
0027	103	-117	-1	128	748	772	2	228	660	682	-2	328	598	607	0	30	689	
1230	587	597	0	231	75	52	0	132	538	559								

TABLE III
Positional Coordinates and Anisotropic Temperature Factors of AgInO_{2}

Atom	x	y	z	U11	U33	U(equ)
Ag	0	0	0		$0.0171(3)$	$0.0050(6)$
In	0	0	$\frac{1}{2}$		0.0102	
O	0	0	$0.1100(4)$	$0.0085(3)$	$0.0081(5)$	0.0058

Note. Thermal parameters are of the form: $T=$ $\exp \left[-2 \pi^{2}\left(\mathrm{U} 11 a^{*} h^{2}+\cdots+\mathrm{U} 23 b^{*} c^{*} k l+\cdots\right)\right] \AA^{2}$.
$1887.8(7) \mathrm{pm}, D_{\text {calc }}=7.23 \mathrm{mg} / \mathrm{m}^{3}, Z=3$. Powder data are given in Table I. The intensities of 2832 reflections were measured (2θ $=3-80^{\circ}$) using an automated diffractometer (Siemens-Stoe AED 2) and graphite monochromated MoK radiation (scan width $\left.=2.4+\left(\left(\lambda_{\alpha 2}-\lambda_{\alpha 1}\right) / \lambda \bar{\alpha}\right) \cdot \tan \theta\right)$. After averaging, applying absorption and LP-correction $(\mu(\mathrm{MoK} \alpha)=165.73 \mathrm{~cm}$, min. and max. transmission coefficients of 0.3411 and 0.6133 , respectively), 171 independent structure factors, which are given in Table II, remained for refinement. Final R values of $R=0.033$ and $R_{\mathrm{w}}=0.022$, with weights derived from counting statistics, were obtained. The atom parameters are given in Table III.

Results and Discussion

AgInO_{2} is isostructural with AgFeO_{2}, CuFeO_{2} (4), CuAlO_{2} (5), CuGaO_{2}, and CuYO_{2} (6), and has the delafossite structure. Oxygen atoms are stacked in the layer sequence (AABBCC) with Ag in linear coordination (AA, BB, and CC), and In in the octahedral sites (AB, BC, and CA). Bond distances and angles for AgInO_{2} are given in Table IV. The accurate crystallographic data of Ag -delafossites studied to date is compiled in Table V. The change in the ratio $\left(\mathrm{O}-\mathrm{M}^{3+}-\mathrm{O}^{\mathrm{II}}\right) /\left(\mathrm{O}-\mathrm{M}^{3+}-\mathrm{O}^{\mathrm{II}}\right)$, which is a sensitive measure of the deformation (flat-
tening along the c axis) of the $M \mathrm{O}_{6}$ octahedra, is insignificant (within the e.s.d's.) in going from Al (1.182) to In (1.190), whereas a significant increase is observed in the corresponding Cu -containing delafossites (Al (1.162), $\mathrm{Y}(1.287)$) (6). In spite of the near constancy of the deformation of the $M \mathrm{O}_{6}$ octahedra, the increase in $\mathrm{In}-\mathrm{O}$ bond length as compared to that of the Al-O bond results in a 13% increase in the a unit cell dimension and a mere 3% in the c unit cell dimension. This is partially due to the fact that roughly $2 / 3$ of the c unit cell parameter is determined by $\mathrm{Ag}-\mathrm{O}$ bonds, whereas these do not contribute to the a unit cell dimension. Furthermore, the increase in the dimensions of the $M \mathrm{O}_{6}$ octahedra in the direction of the c axis is partially compensated by the decrease in $\mathrm{Ag}-\mathrm{O}$ bond length in going from Al to In . Considering the Ag-O bond lengths, a significant increase with decreasing $\mathrm{Ag}-\mathrm{Ag}$ distance is observed, leading to an apparent decrease in the valence sum of Ag by about 10% (7). This increase in Ag-O bond length could be a compensation for bonding interaction between adjacent Ag atoms in the same layer ($1,6,8$). The large value of the temperature factor U11 of all Ag atoms, and the highly anisotropic nature thereof, as demonstrated by the ratio U11/U33, could be further supporting evidence.

The nonconformity of AgFeO_{2} could possibly be due to a partial transfer of charge between Fe and Ag .

TABLE IV
Bond Distances (pm) and Angles $\left({ }^{\circ}\right)$ with e.s.d's in Parentheses

$\mathrm{Ag}-\mathrm{O}$	$207.6(8)$	$(2 \times)$	$\mathrm{O}-\mathrm{In}-\mathrm{O}^{(1)}$	180
$\mathrm{In}-\mathrm{O}$	$217.4(4)$	$(6 \times)$	O-In-O	
$\mathrm{O}-\mathrm{Ag}-\mathrm{O}^{(1)}$	180		O-In-O	$82.2(2)$

Note. Symmetry code (I) $-x,-y,-z$; (II) $-x, x$, $-z$; (III) $-y,-x, z$.

TABLE V
Crystallographic and Bond Data of Ag-Delafossites

	$2 \mathrm{H}-\mathrm{AgAlO}_{2}$	AgFeO_{2}	AgInO_{2}
Reference	(3)	(4)	This work
c (pm)	1221.9(7)	1859.0(2)	1887.8(7)
$\mathrm{Ag}-\mathrm{Ag}$ (pm)	289.6(1)	303.91(2)	327.68(7)
$\mathrm{Ag}-\mathrm{O}$ (pm)	210.1(5)	206.7(8)	207.6(8)
$M-\mathrm{O}$ (pm)	192.5(3)	203.5(4)	217.4(4)
$\mathrm{O}-\mathrm{M}^{3+}-\mathrm{O}^{\text {(II) }}\left({ }^{\circ}\right.$)	97.5(3)	96.6	97.8(2)
$\left(\mathrm{O}-\mathrm{M}^{3+}-\mathrm{O}^{\text {(III) }}\right) /\left(\mathrm{O}-\mathrm{M}^{3+}-\mathrm{O}^{\text {(II) }}\right)$	1.182	1.158	1.190
U11 (Ag)	0.061(3)	-	$0.171(3)$
U11/U33 (Ag)	2.35	-	3.42
Valence of one $M-O$ bond (5)	0.477	0.460	$(0.482)^{a}$
Valence of one $\mathrm{Ag}-\mathrm{O}$ bond (5)	0.567	0.640	0.620
Total valence on $\mathrm{O}\left(1 \times(\mathrm{Ag}-\mathrm{O})+3 \times\left(\mathrm{M}^{3+}-\mathrm{O}\right)\right.$)) 1.999	2.020	$(2.067)^{a}$
Total valence on $M\left(6 \times\left(M^{3+}-\mathrm{O}\right)\right.$	2.864	2.761	$(2.895)^{a}$
Total valence on $\mathrm{Ag}(2 \times(\mathrm{Ag}-\mathrm{O})$	1.134	1.280	1.239

[^0]
Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft and Fonds der Chemie. Technical assistance with the preparative work by Silvia Gutzke is gratefully acknowledged.

References

I. M. Jansen, J. Less-Common Met. 76, 285 (1980).
2. R. D. Shannon, D. B. Rogers, and C. T. PrewITT, Inorg. Chem. 10, 713 (1971).
3. G. Brachtel and M. Jansen, Cryst. Struct. Commun. 10, 173 (1981).
4. C. T. Prewitt, R. D. Shannon, and D. B. RogERS, Inorg. Chem. 10, 719 (1971).
5. T. Ishiguro, A. Kitazawa, N. Mizutani, and M. Kato, J. Solid State Chem. 40, 170 (1981).
6. B. U. Köhler and M. Jansen, Z. Anorg. Allg. Chem. 543, 73 (1986).
7. I. D. Brown, 'Structure and Bonding in Crystals," Vol. II, Academic Press, New York (1981).
8. C. Friebel and M. Jansen, Z. Naturforsch. 39b, 739 (1984).

[^0]: ${ }^{a}$ Parentheses indicate uncertainty in the constants (7) used in the valence calculations.

